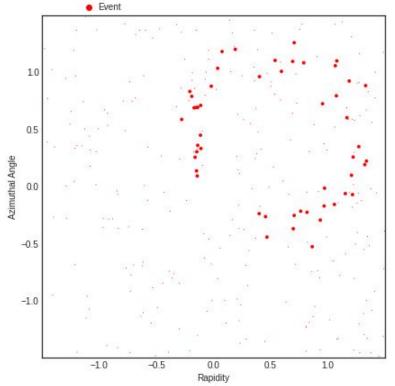
Can you hear the shape of a jet?

Fundamental Question: What shape is this?

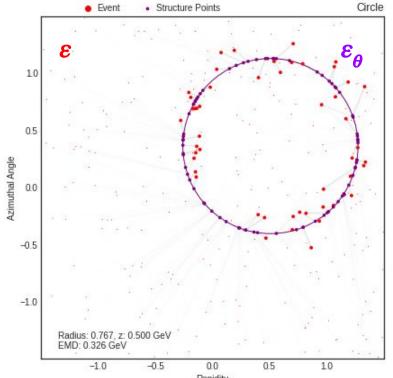


Pictured: (Fake) event that you might have measured at the LHC

Red dots are detector hits on a patch of the LHC cylinder, weighted by energy

Goal: Construct an observable **O** that generically answers this question!

Fundamental Question: What shape is this?



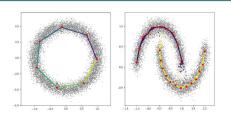
Using the **SHAPER** framework ...

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

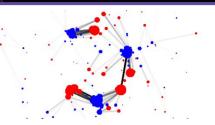
Circle with radius 0.767, center (0.50, 0.36) and a "circle-ness" value of 0.32.

Yes, you CAN hear the shape of a jet!

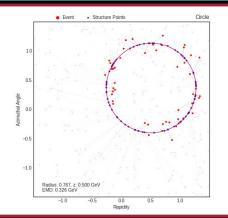
NSF Al Institute for Artificial Intelligence & Fundamental Interactions



Piecewise-Linear Manifold Approximation with K-Deep Simplices (KDS, <u>2012.02134</u>)



Well-Defined Metric on Particle Collisions using Energy Mover's Distance (EMD, 2004.04159)



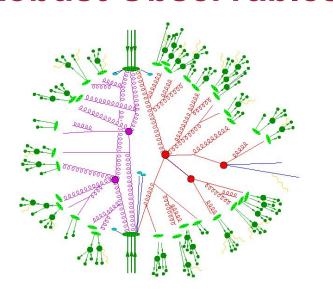
SHAPER: Learning the Shape of Collider Events

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

Framework for defining and calculating useful observables for collider physics!

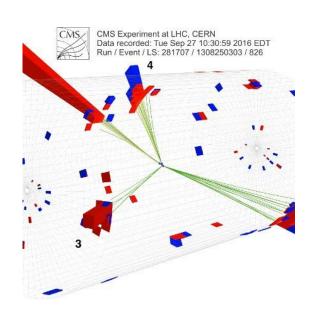
Energy Flows

Robust Observables

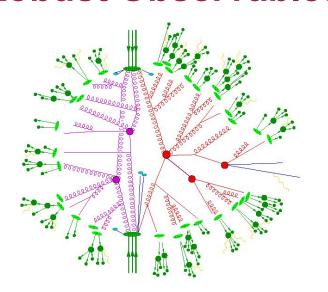


.

Experiment



Robust Observables



Theory

Experiment

Data recorded: Tue Sep 27 10:30:59 2016 EDT Run / Event / LS: 281707 / 1308250303 / 826

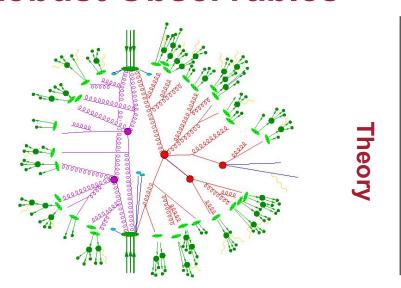
CMS Experiment at LHC, CERN

Perturbativity?
Hadronization?
Parton Shower Model?

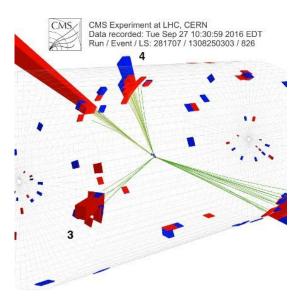
Finite Calorimeter Resolution Effects?

Different Resolution between Detectors?

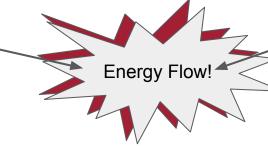
Robust Observables



Experiment



Perturbativity?
Hadronization? ~
Parton Shower Model?



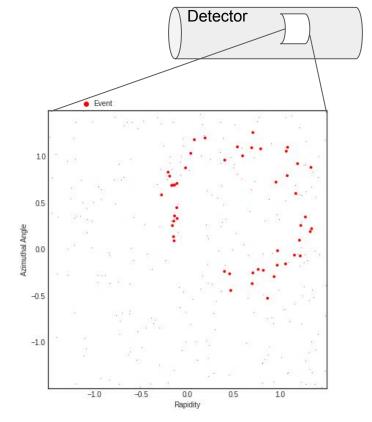
Finite Calorimeter Resolution Effects?
Different Resolution between Detectors?

The Energy Flow

The Infrared and Collinear safe information about a state is contained within its **Energy Flow**:

$$\mathcal{E}(ec{y}) = \sum_{i}^{ ext{Detector Coordinate }(\eta,\,\phi)} z_i \delta(ec{y} - ec{y}_i)$$

Can be either **real** or **idealized**.

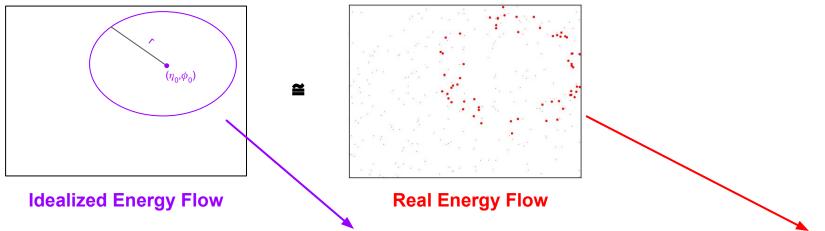


This plot *is* the energy flow for an event

Shapes and the Wasserstein Metric

Shapes and the Energy Flows

Translate our question about shapes into energy flows!



What parameterized energy flow, ε_{θ} , best matches the observed energy flow ε ?

Shape Observables

Minimize over the manifold of parameterized energy flows to determine shape!

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

Learns the "shapiness" \mathscr{O} and the optimal shape parameters θ

Observables

⇔ Manifold of Parameterized Flows correspondence!

The Wasserstein Metric

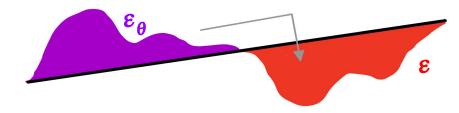
[P. Komiske, E. Metodiev, J. Thaler, 1902.02346; see also T. Cai, J. Cheng, K. Craig, N. Craig, 2111.03670; see also C. Zhang, Y. Cai, G. Lin, C. Shen, 2003.06777; see also L. Hou, C. Yu, D. Samaras, 1611.05916; see also M. Arjovsky, S. Chintala, L. Bottou, 1701.07875]

There is a natural metric on probability distributions, the Wasserstein Metric

$$EMD(\mathcal{E}, \mathcal{E}'_{\theta}) = \sum_{i,j} f_{ij} \frac{|\mathbf{\hat{y}}_i - \mathbf{\hat{y}}'_j|}{R} + |\mathbf{E}_i - \mathbf{E}'_j|$$

where
$$\sum_{j} f_{ij} = E_i$$
, $\sum_{i} f_{ij} = E'_j$, $\sum_{i,j} f_{ij} = \min(E_i, E'_j)$

Also known as the Earth/Energy Mover's Distance (EMD) geometric structure on events!



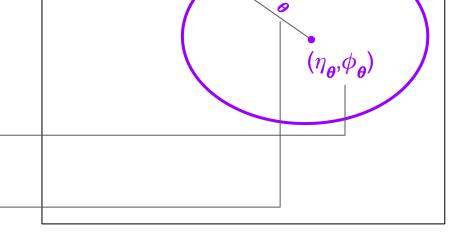
EMD = Work done to move "dirt" optimally

Defining Shapes

Define a *shape* as any parameterized energy flow

For example, for a circle with parameterized radius and center*

$$\mathcal{E}(\vec{y}) = \begin{cases} \frac{1}{2\pi r_{\theta}} & |\vec{y} - \vec{y_{\theta}}| = r_{\theta} \\ 0 & |\vec{y} - \vec{y_{\theta}}| \neq r_{\theta} \end{cases}$$



*Uniform prior by choice for simplicity. In principle, we can pick any parameterized normalized distribution.

Our parameterized circle written as an energy flow

I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, 1004.2489.;

C. Cesarotti, and J. Thaler, 2004.061251

S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, PRL 12 (1964) 57-61;

Observable ⇔ Manifolds

Many existing observables have this form!

- N-subjettines
 ⇔ Manifold of N-point events
- N-jettiness ⇔ Manifold of N-point events with floating energy
- Thrust ⇔ Manifold of back-to-back point events
- Event Isotropy ⇔ Uniform distribution
- ... and more!

All of the form "How much like [shape] does my event look like?"

We generalize this to build more observables!

The SHAPER Framework

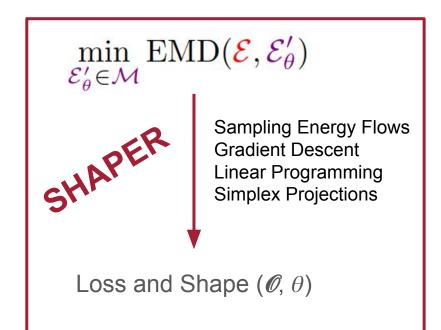
SHAPER

Shape-Hunting Algorithm using Parameterized Energy Reconstruction

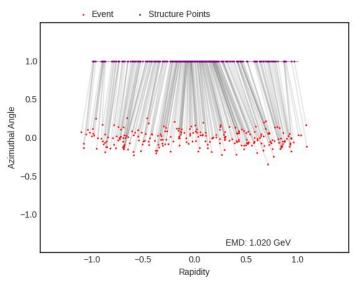
Framework for defining and building IRC-safe observables using parameterized objects

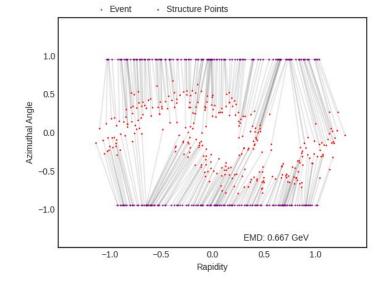
Easy to define new observables by specifying parameterization, or by combining shapes

Returns EMD distance and optimal shape parameters



Fun Animations

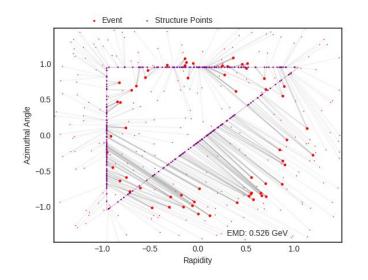


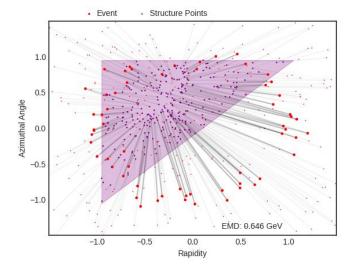


Red: Event Y

Purple: Shape ε_{θ} with structure points a_i Grey: Matrix x_{ij} connecting y's and a_i 's

Fun Animations Cont'd





Red: Event Y

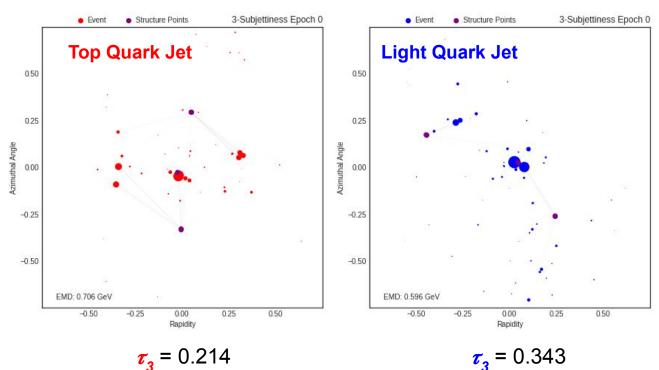
Purple: Shape ε_{θ} with structure points a_i Grey: Matrix f_{ij} connecting y's and a_i 's

Left:
$$\varepsilon_{\theta}$$
 = \triangle EMD = 0.245

Right:
$$\varepsilon_{\theta} = \left| \triangle \right|$$
 EMD = 0.279

N-Subjettiness

Easy to compute classic jet observables!



 $\tau_3 = 0.214$

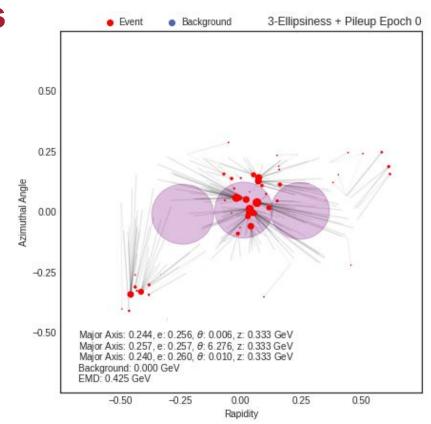
New IRC-Safe Observables

The **SHAPER** framework makes it easy to invent new jet observables!

N-Ellipsiness+Pileup as a jet algorithm.

- Learn jet centers
- Dynamic jet radii (no R hyperparameter)
- Dynamic eccentricities and angles
- Dynamic jet energies
- Uniform Pileup Subtraction
- Learned parameters for discrimination

Can design custom specialized jet algorithms to learn jet substructure!



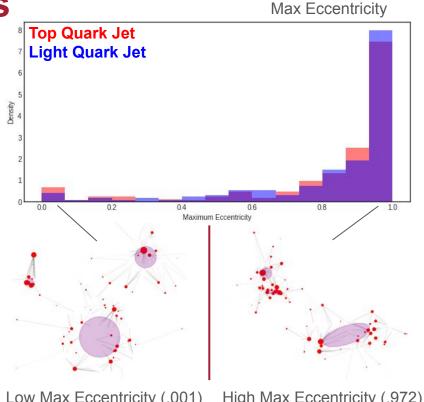
New IRC-Safe Observables

The **SHAPER** framework makes it easy to invent new jet observables!

N-Ellipsiness+Pileup as a jet algorithm.

- Learn jet centers
- Dynamic jet radii (no *R* hyperparameter)
- Dynamic **eccentricities** and angles
- Dynamic jet energies
- **Uniform Pileup Subtraction**
- Learned parameters for discrimination

Can design custom specialized jet algorithms to learn jet substructure!



Low Max Eccentricity (.001)

High Max Eccentricity (.972)

Outlook

SHAPER, a machine learning framework for calculating robust observables for collider physics based on IRC-safety and Wasserstein geometry!

Playground for defining and building custom observables and jet algorithms!

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

Outlook

SHAPER, a machine learning framework for calculating robust observables for collider physics based on IRC-safety and Wasserstein geometry!

Playground for defining and building custom observables and jet algorithms!

$$\mathcal{O}_{\mathcal{M}}(\boldsymbol{\mathcal{E}}) = \min_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$
$$\theta = \operatorname*{argmin}_{\mathcal{E}'_{\theta} \in \mathcal{M}} \mathrm{EMD}(\boldsymbol{\mathcal{E}}, \mathcal{E}'_{\theta})$$

Using **SHAPER**, you *CAN* hear the shape of a jet!

Appendices

Toy Analysis

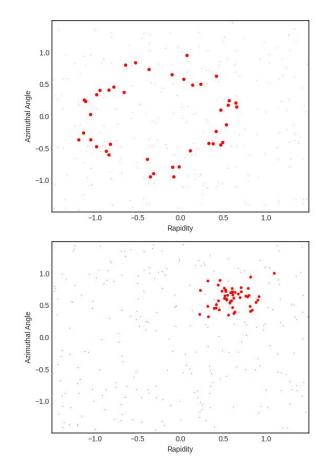
Define the following two types of events:

Type 1: Ring-Like

- Pois(50) "signal" particles, uniformly making up 70%-90% of event energy
- Arranged in a ring with radius $r \sim N(0.75, 0.25)$, width = 0.1
- Pois(250) "background" particles making up remaining energy

Type 2: Disc-Like

- Pois(50) "signal" particles, uniformly making up 70%-90% of event energy
- Arranged in a disc with radius $r \sim N(0.50, 0.25)$
- Pois(250) "background" particles making up remaining energy



Observables

In analogy with *N-jettiness*, define the *A-shapeliness* of an event as the value of the loss when evaluated on the shape *A*.

For this toy analysis, define:

- Shape A₁: Filled-in triangle, parameterized by its vertices
- Shape A₂: Boundary of a triangle, parameterized by its vertices (∂A1)

Both shapes have R = 0.25

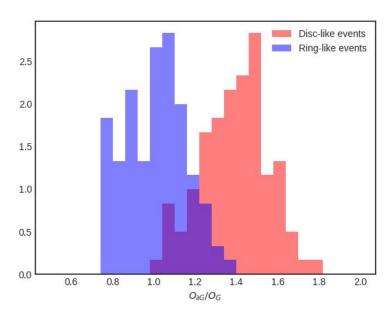
The ratio of the shapeliness values should be a proxy for if the event is ring-like or disc-like

Technical Aspects

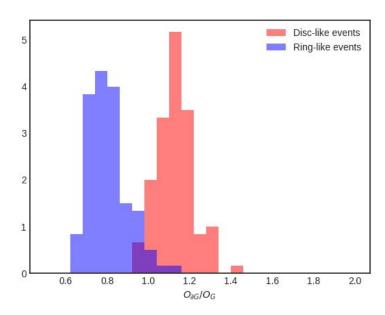
- 125 sample points defining shapes
- Adam optimizer, Ir = 0.05
- 125 epochs with z0 frozen, then 125 epochs with z0 unfrozen
 - Early stopping if loss has not improved after 10 epochs
- Triangles initialized at (-1, -1), (-1, 1), (1,1)

With these settings, each observable takes about 2-3 seconds per event.

Results

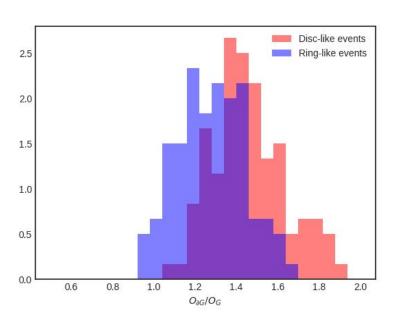


Without unclustered term

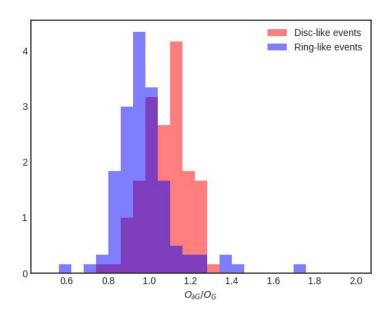


With unclustered term

Results - High Background (40%-60%)



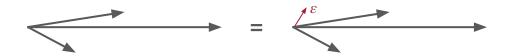
Without unclustered term



With unclustered term

IRC Safety

Infrared Safety: An observable is unchanged under a soft emission



Collinear Safety: An observable is unchanged under a collinear splitting

Implementation

To practically determine this minimum ...

- 1. Initialize A by random sampling the energy flow
- 2. Freeze A. Calculate the Wasserstein Metric loss L, and the corresponding transport matrix f_{iy}
- 3. Freeze *f*. Calculate the gradients of *L* with respect to *A* [ignoring dependencies on *f*]
- 4. Gradient update A
- 5. Freeze *f* and *A*. Gradient update weights *z* by numerical derivative
- 6. Repeat 2-5 until convergence.

